Towards an Empirically Validated Model
for Assessment of Code Quality

Martijn Stegeman
University of Amsterdam

martijn@stgm.nl

Erik Barendsen
Radboud University Nijmegen
Open Universiteit

Sjaak Smetsers
Radboud University Nijmegen

s.smetsers@cs.ru.nl

e.barendsen@cs.ru.nl

ABSTRACT

We present a pilot study into developing a model of feedback
on code quality in introductory programming courses. To de-
vise such a model, we analyzed professional standards of code
quality embedded in three popular software engineering hand-
books and found 401 suggestions that we categorized into
twenty topics. We recorded three instructors who performed
a think-aloud judgment of student-submitted programs, and
we interviewed them on the topics from the books, leading to
178 statements about code quality. The statements from the
instructor interviews allowed us to generate a set of topics
relevant to their practice of giving feedback, which we used
to create criteria for the model. We used the instructor
statements as well as the book suggestions to distinguish
three levels of achievement for each criterion. This resulted
in a total of 9 criteria for code quality. The interviews with
the instructors generated a view of code quality that is very
comparable to what was found in the handbooks, while the
handbooks provide detailed suggestions that make our results
richer than previously published grading schemes. As such,
this process leads to an overview of code quality criteria and
levels that can be very useful for constructing a standards-
based rubric for introductory programming courses.

Categories and Subject Descriptors

D.2 [Software]: Software Engineering; K.3.2 [Computer
and Information Science Education]|: Computer Science
Education

General Terms

Design, Human factors

Keywords

Programming education, Code quality, Feedback, Assess-
ment, Rubrics, Empirical validation

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

Koli Calling ’ 14, November 20-23 2014, Koli, Finland.

Copyright is held by the authors. Publication rights licensed to ACM.
ACM 978-1-4503-3065-7/14/11 ...$15.00.
http://dx.doi.org/10.1145/2674683.2674702

99

1. INTRODUCTION

1.1 Code quality

Software quality has been a topic of interest to professional
software engineers, software engineering researchers and com-
puter science educators. The notion of quality can be applied
to all aspects of creating software, from the software process
itself to the requirements.

We consider code quality to be an aspect of software qual-
ity that can be determined by just looking at the source
code, i.e., without any form of testing, or checking against
specification. In the software quality model from Boehm et
al. [3], this aspect can be identified as the understandability
characteristic, which itself comprises five sub-characteristics:
consistency, self-descriptiveness, structuredness, conciseness,
and legibility. Note that this precludes concepts like effi-
ciency, portability, and conformance to a specification. This
distinction is comparable to what is called ‘internal’ versus
‘external’ quality in professional software engineering [12].

In many programming courses, aspects of code quality
are part of the learning goals. For example, students are
expected to be able to choose an appropriate type of loop,
or to develop a consistent coding style [1]. It seems natural
that emphasis on structural quality is present even in early
programming courses, because attention to such aspects can
lay the groundwork for more advanced treatment in later
software engineering courses.

More importantly, introductory courses often aim to present
the fundamentals of computer science as a whole: learning
a programming language and building software is used to
teach students about computing concepts for the first time [1].
Instructors of such courses tend to regard low code quality
(‘clumsy code’) as a possible sign of students’ fundamental
misconceptions or of an unstructured design process. This
provides additional motivation to review novices’ code sys-
tematically.

1.2 Feedback

Providing feedback is known to be crucial to effective learning
in general [6, |[7]. In a characterization of useful feedback,
Sadler |15] proposed, that in order to learn, a student needs
to know three things: what good performance on a task is;
how their own performance relates to good performance; and
what to do to close the ‘gap’ between those [15]. Several
studies support the added value of specific feedback [16] that
support these student needs.

A number of instructors have published grading schemes
used for assessing the quality of student code and provid-

ing feedback. These grading schemes decompose expected
performance into several criteria, usually linked to language
features designed to support the understandability of code
(e.g. comments, modularization).

Instructors from Jacksonville University documented their
informal consensus-based process to come to a number of
criteria [5). In their scheme, execution, design and documen-
tation are covered. The criteria are not explicitly defined.

Howatt’s |8] grading scheme specifies several levels for a
number of criteria, and definitions are not only provided,
but also intended to be shared with students. The evolution
of some criteria is also documented: ‘design’ was separated
from ‘style’, as students neglected to devise a plan up-front;
‘specification conformance’ was separated from ‘execution’, as
students stopped implementing the remaining requirements
as soon as they got part of the program working correctly.

Becker’s [2] scheme is described in great detail: there are
many criteria, and for each of those, three levels of accom-
plishment have been defined. There is particular attention to
specific design choices, such as the use of magic numbers and
global variables. Here too, the definitions are shared with
students. Smith [17] provides a similarly elaborate scheme.

Comparing feedback practices based on grading schemes
is complex. From the grading schemes we found, all but
[8] are provided without any systematic justification for the
criteria. In practice, it seems reasonable to assume that
instructors generally come to the same scores regardless of
grading method and philosophy [4]. However, from these
schemes we conclude that instructors give feedback at dif-
ferent levels of specificity and have varying expectations of
code quality: it is especially notable that no single grading
scheme above covers all of the criteria that are used by these
instructors. This is why we see an opportunity to create a
specification of code quality for introductory courses in a
more systematic way.

1.3 Aim of the study

Our goal is to construct a model for feedback on code quality
based on empirical data from professional standards and
instructional practice. Such a model is intended to support
development and analysis of feedback instruments for code
quality. In line with [15], feedback should be provided in two
dimensions: criteria, i.e., the relevant aspects of code quality,
and achievement levels for each of these criteria.

This paper describes a first exploration of systematically
eliciting criteria and levels that are relevant to code written
in introductory programming courses. We characterize such
courses by adopting the common topics derived by Tew and
Guzdial [19]. These are: fundamentals (variables, assignment,
etc.), logical operators, selection statement (if/else), definite
loops (for), indefinite loops (while), arrays, function/method
parameters, function/method return values, recursion, and
object-oriented basics (class definition, method calls).

Our research questions are as follows.

1. What criteria for code quality, relevant to introduc-
tory programming courses, are present in professional
software engineering literature?

Coding standards in professional literature are not necessarily
framed in a way that is useful for introductory programming
courses, even when we constrain the selection to strictly
relevant topics. Therefore, we will establish the relevant
aspects of code quality in teaching practice:

100

2. What kind of feedback do instructors of introductory
programming courses give to students on programming
assignments?

Finally, we will combine the insights we gain from answering
the above questions to construct a model of feedback for
code quality.

3. What levels of code quality can be distinguished in
professional standards and instructional practice?

Communicating expectations to students usually requires
more than listing criteria and levels [22]. A common approach
is to provide students with a rubric [21] accompanied by
descriptive statements or exemplars. Rubrics can be used
to calculate grades, to provide feedback, or both [|9]. We
intend to use the proposed model to construct such feedback
instruments for our own courses, but actual development is
beyond the scope of the present study.

2. METHOD
2.1 Analysis of professional handbooks

In order to sample professional standards, we selected a
compact set of renowned professional handbooks concerned
with code quality. As a first set of candidate titles, we took
the top-15 books of the user-generated list of ‘programming’
books, as published by the Goodreads Websiteﬂ From this
list, we selected those books that focus on code quality in
general: neither tied to a specific programming language,
nor mainly focused on the software engineering process. We
discarded books that are primarily concerned with constructs
going beyond the usual scope of introductory courses [19),
e.g. design patterns or advanced algorithms. The handbooks
in the final selection were (A) The pragmatic programmer by
Andy Hunt and Dave Thomas [20]; (B) Code complete by
Steve McConnell [12]; and (C) Clean code by Robert Martin
|11].

Within these books, we selected the normative statements
on code quality (to be called ‘suggestions’ from now on),
restricting these to the list of common topics in introductory
courses [19] and the sub-characteristics of ‘understandabil-
ity’ |3]. We observed that these are defined on an abstract
methodological level. To prepare for the construction of a
feedback model defined in more concrete, observable terms
(like in the grading schemes discussed earlier), we performed
a qualitative analysis using an analytic coding [18| proce-
dure. We took the sub-characteristics as initial categories
and labeled the suggestions in terms of specific elements or
properties of program code. Then we merged similar labels
until a set of pairwise disjoint code aspects was obtained.
After this reduction, a more in-depth analysis of the sug-
gestions within the resulting code aspects was performed,
focusing on content, priorities, and variation.

2.2 Instructor interviews

To elicit instructors’ views and feedback practice, we con-
ducted interviews with three experienced Dutch lecturers
from different universities, each having at least fifteen years
of teaching experience in introductory courses in higher edu-
cation:

'Top-15 programming books, as fetched on February
24, 2014 from https://www.goodreads.com/shelf/show/
programming.

https://www.goodreads.com/shelf/show/programming
https://www.goodreads.com/shelf/show/programming

e Instructor 1 teaches a programming course for science
students in general, given in Java.

e Instructor 2 teaches a course for computer science fresh-
men, also given in Java.

e Instructor 3 teaches a course for applied computer
science freshmen, given in C.

We held two rounds of semi-structured interviews: the first
consisted of individual sessions with each of the instructors,
and the second was a focus group with all three together.

In the first round, we started the interview with a think-
aloud feedback session, based on a programming assignment
taken from the third week of an introductory course at the
first author’s university. We selected three different solutions
from students who had taken the course. Each instructor
was asked to give feedback about the three solutions. In
order to capture both the applied criteria and the instructors’
reasoning, we asked the instructors to think aloud while
articulating their feedback—focusing on characterizing the
quality of the code, giving suggestions for improvement, and
comparing to feedback they usually give.

Then, instructors were presented with each of the topics
we derived from the professional programming handbooks,
and asked to respond by giving examples of concrete feed-
back from their own courses. We did this to make sure our
generated view of code quality would become as complete as
possible and not be limited by the assignment used.

The second round had a similar structure, but was held
as a focus group to benefit from the interaction between the
three instructors. In order to discover more advanced criteria,
the think-aloud interview in this round was based on the
final assignment in a Java course covering the topic lists of
|19]; the instructors gave feedback on three student solutions
to this assignment. The results of the handbook analysis
were discussed for a second time, but this time together.

All sessions were recorded and transcribed verbatim and
the data were subjected to a qualitative analysis. In an initial
open coding [18] phase, we identified the statements about
quality that are observable in program code. Subsequently
we performed an analytic coding [18| procedure, summarizing
similar statements using labels such as “comments should
not repeat the code” or “choosing the right variable scope”.
Finally, the labels were categorized into more general topics
in terms of distinct aspects of code.

2.3 Construction of the model

Here we combined the results from the textbook analysis
and the instructor interviews. Figure [[] summarizes the
way we derived the model from our analyses. The criteria
were initially taken from the topics that we generated in
the analysis of the instructor interviews. The levels for each
criterion are based on the corresponding statements on code
quality from both interviews and handbooks.

During the instructor interviews, we noted that the in-
structors tended to give three kinds of feedback, which we
used as a preliminary breakdown of levels:

e remarks about serious shortcomings;
e remarks relating code to the expected quality;
e remarks about quality rising beyond expected levels.

This resulted in a possibly partial set of criterion-level com-
binations. Wherever possible, we added descriptions taken
from the in-depth analysis of the handbooks to fill gaps in

101

software engineering
handbooks

T
suggestions

statements

criteria levels

Figure 1: Model generation process

the model not covered by the instructors’ statements.

For each criterion, we checked whether the identified levels
were mutually compatible, i.e., could be expressed in terms
of the same sub-criteria. In the case of incompatible levels,
the corresponding criterion was split into two (or more) sub-
criteria.

3. RESULTS

3.1 Analysis of professional handbooks

Here we describe the results of our analysis of professional
handbooks. Selecting suggestions from the three books by
using introductory topics |19] and characteristics of under-
standability [3] resulted in 401 individual items. Labeling
all suggestions using the understandability characteristics
resulted in the frequencies listed in Table [T}

conciseness 44
consistency 38
legibility 249
self-descriptiveness 13
structuredness 57

Table 1: Frequency of suggestions for each of the
characteristics of understandability in software.

Analytic coding of the suggestions within each characteristic
resulted in the labels described in Table 2 on the next page,
and the categorization of these same labels into a set of code
aspects is described in Table 3. In this set, we separated some
of the aspects that are independent of the overall code struc-
ture (comments, formatting, layout, and naming) and then
split higher-level structure (decomposition, modularization)
from expressiveness of smaller parts.

The 21 suggestions from The Pragmatic Programmer (A)
that we selected, were all either connected to the ‘Don’t
repeat yourself’ principle, or suggestions about good docu-
mentation and structure. The 213 suggestions from Code
Complete (B) and 167 from Clean Code (C) both span most
of the criteria that emerged from the inductive grouping;
the only exception is that (C) has no suggestions specifically
about the appropriate use of idiom.

conciseness 44 comments 51
dead code 6 comment content 19
duplication 4 minimalist comments 32
fr:fxg'menFation 2 formatting 42
minimalist comments 32 expressive formatting 18
consistency 38 formatting) 21
appropriate idiom 28 formatting consistency 3
form.atting cpnsistency 3 layout 20
naming consistency 7 affinity 3
legibility 249 dead code 6
affinity 3 order 11
clarification 30 names 115
clear control flow 27 naming 108
comment content 6 naming consistency 7
expressive formatting 18
formatting 21 structure 88
module size 1 abstraction 19
naming 108 duplication 4
order 11 focus 38
routine size 3 module size 1
type signature 21 routine size 3
— type signature 21
self-descriptiveness 13 fragmentation 9
comment content 13
expressiveness 85
Structu?edness 57 appropriate idiom 28
abstraction 19 clarification 30
focus 38 clear control flow 27

Table 2: Frequencies
of labels generated
during analytic coding

Table 3: Frequencies
of labels, re-grouped
by code aspect

Below, we describe the in-depth analysis of the handbook
contents organized by the aspects from Table 3.

Comments — Suggestions on comments can be separated
into two themes: arguments on having as little commenting
as possible, and suggestions about appropriate content. A
theme that is present in all books is to only comment if
strictly needed:

Why am I so down on comments? Because they
lie. Not always, and not intentionally, but too
often. (C)

The books use different perspectives for minimizing com-
ments. Code should preferably be self-documenting by use
of good names and a clear structure (B,C). Comments can
be redundant as they repeat information that can be derived
from the code (A,B,C). There is also information that is
often listed in header comments but can be usually found in,
for example, a source control system: authorship, revision
history, the name of the current file, etc. (A,C). The repeated
argument for minimizing comments is that comments can
get obsolete quickly (B,C):

The older a comment is, and the farther away it
is from the code it describes, the more likely it is
to be just plain wrong. The reason is simple. Pro-
grammers can't realistically maintain them. (C)

However, there are still categories of information that are
complementary to the code, so there are many suggestions for
including appropriate information in comments. McConnell
summarizes:

The three kinds of comments that are acceptable
for completed code are information that can’t be

102

expressed in code, intent comments, and summary
comments. (B)

In contrast to this, (C) suggests that even summary com-
ments should hardly be needed, as routines and classes should
be of minimal length. However, (B) recognizes the value of
such summaries, allowing readers to quickly scan the code.
Also, header comments should describe at least how to use
routines and classes (A,B).

All books describe small decisions and problems that can
be highlighted by using comments, such as exceptions in
control flow or significant data type declarations.

Finally, (C) wants comments to be precise and spelled
correctly.

Formatting — The first major theme in formatting is con-
sistency. This theme is present in (C) and (B):

You should take care that your code is nicely
formatted. You should choose a set of simple
rules that govern the format of your code, and
then you should consistently apply those rules. If
you are working on a team, then the team should
agree to a single set of formatting rules and all
members should comply. (C)

The second theme is the need for the formatting to mimic
the structure of the program:

The Fundamental Theorem of Formatting says
that good visual layout shows the logical structure
of a program. (B)

Other suggestions in (C) and (B) link specific types of format-
ting to that goal: related statements should be grouped and
separated by a blank line; indentation should consistently
follow the scope of the statements; multi-line statements
should be split at a point that makes clear that they are
unfinished; white space and parentheses should be used to
emphasize the expected evaluation order of expressions; and
brackets should be used to emphasize flow control where it
is not self-evident.

Nearly all code is read left to right and top to
bottom. Each line represents an expression or
a clause, and each group of lines represents a
complete thought. Those thoughts should be
separated from each other with blank lines. (C)

Finally, line length should normally not be more than 80-100
characters, but long lines should be the exception, and not
the rule (B,C).

Layout — For the layout of code in files, we found three
themes: the idea of putting related parts close together, the
order in which to put parts, and the presence of old code.

Putting related parts together in the code is called ‘affinity’
by (C). It requires, for example, that related routines are
placed close together in a source file. (B) adds that each
class should be in a separate file.

Ordering of code in a file can be optimized for readabil-
ity (C), for example by putting the most used routines at the
top and related routines directly below. An alternative is to
order routines alphabetically (B). Consistency in a project
also plays a role here; for example by always putting variable
declarations at the top (C).

If one function calls another, they should be ver-
tically close, and the caller should be above the
callee, if at all possible. This gives the program
a natural flow. If the convention is followed reli-
ably, readers will be able to trust that function
definitions will follow shortly after their use. |[...]
This makes it easy to find the called functions
and greatly enhances the readability of the whole
module.

Old code, such as commented-out code or routines that are
never called, should always be removed according to (C).
(B) adds that variables, even though declared, can remain
unused.

Names — The books emphasize three themes for naming;:
expressiveness, readability and consistency. (C) summarizes
the first goal as follows:

Choosing names that reveal intent can make it
much easier to understand and change code.

All books support this idea and provide ways to achieve
expressive names. Names should cover the complete abstrac-
tion (B,C), be concise (C) and distinctive (B,C). For distinc-
tiveness, many examples are given: the use of very generic
words such as flag for names is pointed out as potentially
problematic (B). The books also suggest what to avoid here:
intentional misspellings (B,C) or multiple similar names with
number postfixes (B). In contrast to expressiveness, names
can be meaningless in many ways:

Variable names, of course, should be well chosen
and meaningful. foo, for instance, is meaning-
less, as is doit or manager or stuff. Hungarian
notation (where you encode the variable’s type
information in the name itself) is utterly inap-
propriate in object-oriented systems. Remember
that you (and others after you) will be reading
the code many hundreds of times, but only writ-
ing it a few times. Take the time to spell out
connectionPool instead of cp. (A)

Some names can be plainly misleading, for example when
abusing generic pre- and postfixes:

The word “list” means something specific to pro-
grammers. If the container holding the accounts
is not actually a List, it may lead to false conclu-
sions. (C)

There are also suggestions for the readability of names: for
example, having clear word boundaries in names by using
underscores or camel casing, using positive boolean names,
and using easy to pronounce names (B,C).

Consistency in names is mostly related to vocabulary (B,C).
The books suggest that modules have a noun name or noun
phrase name in line with platform conventions. There also
also names that are common in programming, for example
done, error, found and success (B).

Structure — For routines, we found that size should mostly
be limited (B,C). This is reflected in many suggestions that
propose to constrain the focus of each routine. (C) advises
to create extremely small routines that are just two, three or
four lines long, while (B) speaks of individual routines that

103

could be allowed to grow to a size of 100-200 lines. However,
this is deemed an exception. In general, functions should do
one thing, as emphasized by (B):

Functional cohesion is the strongest and best kind
of cohesion, occurring when a routine performs
one and only one operation.

If the routines still have multiple tasks, (B) argues to sep-
arate these into parts as much as possible. This includes
variables (B,C).

As a general rule, the variables you initialize be-
fore the loop are the variables you’ll manipulate
in the housekeeping part of the loop. (B)

(A,C) argue to limit the amount of variables that are shared
between routines. This can be contrasted to having not
too many parameters, which is also argued by (C). (B),
while acknowledging the problems programmers have with
parameters, focuses on putting parameters in a natural or
consistent order and giving intention-revealing names.

Finally, removing repetition in routines is an explicit goal
in all books. Just as with comments, (A) argues against such
duplication:

Avoid similar functions: often you’ll come across
a set of functions that all look similar — maybe
they share common code at the start and end, but
each has a different central algorithm. Duplicate
code is a symptom of structural problems. (A)

For modules, we find that they should have well-defined
subjects (B,C). (C) cites the ‘single responsibility principle’
to support this. (B) calls it “presenting a consistent level of
abstraction.” All books argue for defining modules such that
communication between them is limited.

At the highest level of design we find a trade-off between
keeping modules small and preventing fragmentation of the
system as a whole. (C) argues that fragmentation is of
lower priority, however. The same trade-off happens between
preventing fragmentation of individual modules, thus having
many routines, and the preference to keep routines small.

Expressiveness — We found three larger themes: having
a simple control flow, using appropriate idiom, and having
simple expressions.

Control flow should be kept simple by avoiding nested
structures (B,C) and keeping structures like loops short (B,C).
Furthermore, (B) advises to feature the nominal path to the
code most prominently, for example by always keeping the
expected case in a selection statement in the if clause and
not in the else clause. Also, do not use too many return
and break statements to jump out of the normal flow (B).
However, (B) says that sometimes, it is actually the right
thing to do:

In certain routines, once you know the answer,
you want to return it to the calling routine im-
mediately. If the routine is defined in such a way
that it doesn’t require any further cleanup once
it detects an error, not returning immediately
means that you have to write more code. (B)

Finally, both (B) and (C) suggest not to do more than one
thing per line, especially if it is considered a side-effect.

For the use of language idiom, only (B) gives many exam-
ples of choosing the right structure, and of using structures in
a misleading way. For example, when choosing a loop, prefer
a for loop when it’s appropriate, such as when looping over
a known range or a certain number of times. Otherwise, use
a while loop. Also use a while loop any time you need to
jump out of the middle of the loop (B). Custom use of control
structures can be very misleading to other programmers:

It’s bad form to use the value of the loop index af-
ter the loop. The terminal value of the loop index
varies from language to language and implemen-
tation to implementation. The value is different
when the loop terminates normally and when it
terminates abnormally. Even if you happen to
know what the final value is without stopping to
think about it, the next person to read the code
will probably have to think about it. It’s better
form and more self-documenting if you assign the
final value to a variable at the appropriate point
inside the loop. (B)

For expressions, we found three themes: keeping them sim-
ple, using the right data types, and naming all constants.
In general, for keeping expressions simple, the books sug-
gest performing logical simplifications, using intermediary
variables, and making implicit or explicit comparisons (B,C).

Instead of merely testing a boolean expression,
you can assign the expression to a variable that
makes the implication of the test unmistakable. (B)

Only (B) provides suggestions for choosing the right data
type, and focuses on often-overlooked enums and structures.
All three books comment on the use of unnamed constants,
or “magic numbers.”

This is probably one of the oldest rules in software
development. I remember reading it in the late
sixties in introductory COBOL, FORTRAN, and
PL/1 manuals. In general it is a bad idea to have
raw numbers in your code. You should hide them
behind well-named constants. (C)

3.2 Instructor interviews

Below, we describe the results of two rounds of interviews
with instructors. We combined the remarks they made during
the think-aloud judgment of student submissions with the
remarks that were prompted by describing criteria derived
from the handbooks. This led to a first set of topics that
span code quality in introductory courses.

We labeled the 178 statements about observable code qual-
ity from the instructor interviews. Grouping the statements
using analytic coding generated eight topics, all supported
by a variety of statements from interviews (Table [4)).

Documentation Presentation Algorithms Structure
names layout flow decomposition
comments formatting expressions modularization

Table 4: Topics derived from interviews

The frequencies of statements provided by each instructor
are listed in Table [5| Of the individual topics, relatively few

104

statements were on ‘layout’: this aspect was mentioned in
only 5 statements by instructors 2 and 3. ‘Names’ and ‘mod-
ularization’ were represented by 11 statements each, while
all other topics were represented in 21 or more statements.

instructor 1 2 3 total

Documentation 13 21 21 48

Presentation 4 16 9 29

Algorithms 26 14 19 59

Structure 20 12 10 42
63 63 52

Table 5: Frequencies of coded statements

In terms of differences between the first and second round of
interviews, we find that especially instructor 1 made many
more statements on ‘decomposition’ in round two. There
were also a few more statements on ‘modularization’. In
contrast, there were less statements on ‘flow’, ‘formatting’
and ‘comments’.

Looking at the differences between prompted and spon-
taneous statements, we find that ‘modularization’ was only
mentioned when prompted. ‘Naming’ generated more state-
ments when prompted than spontaneously, while all other
topics were represented more often in spontaneous statements
than in prompted statements.

We will now discuss the statements that the instructors
provided for each of the eight topics.

Names — The instructors gave feedback on the appropriate
names of routines, modules or variables. Instructor 2 said:
“The name of a class should precisely indicate what that
thing has or does.” There were some negative examples: one
instructor found that a longer name did not actually describe
what the routine did, and two instructors saw problems with
short unexplained variable names.

One could say “it’s a small program and it does
not really matter that you violate the rules,” but
even then I think it would be wise to teach them
to pick good names. So now that I think about
it, I would probably deduct a point for thatﬂ
(Instructor 1)

Instructors 1 and 2 also commented on names that they
found hard to read:

I would prefer that variables, if they contain mul-
tiple words, use camel casing, so I can easily read
them. (Instructor 1)

Comments — All instructors stated that comments should
add meaning to the code: instructors 1 and 2 made this
explicit, and instructors 2 and 3 gave feedback on redundant
comments that repeat what is in the code.

The comments should be at a higher level of ab-
straction. You should describe the intent behind
what you are doing, not provide a textual version
of what follows. (Instructor 1)

2 All quotes in this section have been translated from Dutch
by the authors.

Two instructors expressed problems with having too many
comments: instructor 1 and 3 stated that comments in code
should often not be necessary, provided that the code is
simple. On the other hand, instructors 1 and 2 noted that
routines and modules should normally have header comments.
Instructors 2 and 3 also gave feedback on some occasions
where comments were missing.

Layout — Instructors 2 and 3 both remarked on the presence
of old code and the ordering of code in a file. Instructor
2 said that old code would not necessarily result in points
deducted, but that it would be commented on. Instructor
2 stated that students having old code happens very often.
Instructor 3 noted that one solution had instance variables
at the bottom of a module, and instructor 2 concluded that
this ordering should be consistently applied.

Formatting — All instructors mentioned some form of
formatting. The methods that were discussed: grouping with
blank lines (2 and 3), extra brackets (1), indentation (1, 2
and 3), controlling line length (2) and spacing (2 and 3). Two
goals for formatting were stated by the instructors: making
code structure explicit (all), and emphasizing similarities and
differences (2):

I think that is very nice, very symmetrical. I
like symmetric code; if you do similar things they
should be similarly formatted. (Instructor 2)

All instructors noted that formatting choices should be con-
sistently applied. Instructor 3 mentioned two cases were he
said formatting was misleading.

Flow — The instructors all listed reasons why they thought
the flow control could be too complex: deep nesting (1 and
3), choice of control structures (all), performing more than
one task per line (1 and 3), having exceptions in the flow (1
and 2), having large blocks of code in a conditional (all), and
library use (all). Instructor 3 gave feedback on the misleading
use of idiom. Instructor 1 said about the choice of control
structure:

I think it’s really neat that he uses enhanced for
loops. (Instructor 1)

Expressions — All instructors commented on the redun-
dancy of some expressions for loops and conditionals, where
the expression partially retests a previous condition. Instruc-
tors 1 and 2 also noted various tests that were completely
duplicate.

This is not DRY, as you have the same test: one
in the if statement, and the other in the while.
(Instructor 2)

All instructors also commented on using hardcoded literals in
expressions (magic numbers). They all said that this should
be avoided and replaced by named constants.

Decomposition — The instructors all said that routines
should be limited in length and perform a limited amount of
tasks.

Inverting lists and printing them, we don’t do
that. That is when we need to have a separate
function for inverting and a separate function for
printing. (Instructor 3)

105

Instructors 1 and 2 also commented that if a routine performs
multiple tasks, they should be clearly separated within the
routine. The same instructors gave feedback on having loop
counters as class-wide variables.

That list of instance variables contains i and
index. That is a big problem. It really violates
every rule in the book. (Instructor 2)

Modularization — All comments about modularization
were made during the discussion of suggestions from the
handbooks, and not during the think-aloud judgment. In-
structors 1 and 2 emphasized separation of concerns, where
instructor 1 stated that “you rarely have too many classes,”
and instructor 2 said that classes should not be longer that a
page of code. They also put a limit on the separation; both
stated that classes should not be artificially separated.

3.3 Construction of the model

Here we describe the results of combining the statements
made by instructors and the suggestions in the handbooks
to create a set of levels for our model.

Formulating criteria and levels.

We based our initial set of eight assessment criteria on the
topics generated during the analysis of the instructor in-
terviews. To determine appropriate levels of achievement,
we consulted the relevant book suggestions for each topic.
Doing so led us to split the ‘comments’ topic into two, as the
book suggestions reinforced the idea from instructors that
comment headers and comments in the code have differing
goals. As one instructor said:

If 'm writing a program for solving a quadratic
equation then I should put that at the top.

This mandatory aspect of explaining what larger parts of
the code do, is also present in the books. This in contrast
to comments in the code, where instructors and books agree
that these should only be included when strictly needed.
These incompatible sub-criteria led us to separate ‘headers’
from ‘comments’, resulting in a total of 9 criteria:

Documentation Presentation Algorithms Structure
names layout flow decomposition
headers formatting expressions modularization

comments
Table 6: Final set of criteria.
Notation.

Below, we list the sources we used for the defining the levels
in the model. We distiguished the following levels. @) signi-
fies descriptions of how to reach the ezpected quality of each
criterion, elaborating on how to use features of the program-
ming language to help make the code better. () signifies
descriptions of serious shortcomings in code; sometimes this
is a violation of simple heuristics (e.g., old code still present),
sometimes it indicates non-effort (e.g., meaningless variable
names). Finally, ® signifies descriptions of code that is op-
timized beyond expected quality; reaching this level would
involve experimentation and more advanced trade-offs.

Names — Instructors and books emphasize that names
should describe the intent ® of the underlying code. Both
contrast this to meaningless (§) names; for example, one- or
two-letter variable names that have no apparent connection
to the intended meaning. The books add misleading S
names. Furthermore, the books list ways in which names can
be more meaningful in the context of a program: complete,
distinctive (supported by one instructor) and concise.

The books mention that names should be readable. One
instructor stated a way to achieve this: having clearly sepa-
rated parts by way of camel-casing. Examples in the books
concern other easy to fix problems, such as needless abbre-
viation or using hard-to-distinguish characters (11). We
therefore added unreadable (8 names as a shortcoming.

In the books, there are many examples of having a con-
sistent vocabulary ®. As this requires experimentation and
some experience to get right, we see this as an optimization
goal.

Headers — Although the books in general mention that
comments should hardly ever be needed, because routines
should be kept small; as this is a separate goal, we take the
position that header comments should usually be present.

Instructors state that routines and modules should nor-
mally have header comments. These usually summarize &
the goal of each part of the program and explain parameters,
i.e. how to use (® the part. Using correct spelling can be a
part of this, as supported by one instructor and one book.
Instructors and books both emphasize that redundant
comments are a problem. One book and instructors noted
the goal of spelling ® correctly. The books add that descrip-
tions can be obsolete (§), and instructors noted that headers
can be completely missing (S).

The books list several types of comments that are redun-
dant because the information is available outside of the code.
Providing only essential B) information can thus be seen as a
optimization goal. To allow students to progress from missing
headers to only essential information, we added incomplete
and wordy descriptions as intermediary stages.

Comments — The books explain that good comments in
the code provide elaboration of decisions & and potential
problems (S). As with header comments, these can be redun-
dant, obsolete (S, missing () or use mized languages (S).

Instructors and books both state that comments in the
code should usually not be necessary, provided that the
code is simple. We defined where strictly needed as a
optimization goal. Between missing comments and only
commenting where strictly needed, we added wordy and
concise descriptions as intermediary stages.

Layout — The books suggest that optimizing layout for
readability is a goal), and specify two aspects of this:
grouping code and ordering it. The latter is also supported
by two instructors. Together, we call these “arrangement”.
Doing this consistently between files in emphasized by
one instructor and by the books.

Two instructors offered that old code was regularly present,
but they did not say this was a big problem. Because the
books argue that having old code () is easily avoided, we list
this as a problem.

Formatting — In the books as well as in the interviews
we found that many syntactic features can be used to make
code easier to read. Using indentation, blank lines, spacing

106

and brackets to consistently highlight ® the intended struc-
ture of the code are named as most important factors. We
defined it as a problem when these are missing () or plainly
misleading (), as indicated by the instructors.

A more complex goal is highlighting similarities and dif-
ferences between lines of code by formatting those in
consistent fashion. One instructor in particular valued this
use and the books give several examples, so we include this
as a optimization goal.

One instructor commented that line length () prevented
the code to fit on the screen in one case. As the books
support this by suggesting that line length be limited, and it
is easily controlled, we add it as a problematic feature.

Flow — Instructors and books define simplifying ® and lim-
iting exceptions E) as goals for the the control flow. Choosing
appropriate B control structures and libraries is named by
all instructors and in one book.

Instructors have problems with deep nesting (§) and per-
forming more than one task per line (8). They and the books
also mention cases where customizations of control structures
are misleading

Prominently featuring the ezpected or nominal path
was named by all instructors and as an important topic in
one book. Because this requires refactoring we add this as a
optimization goal.

Expressions — The books define a goal of having simple
® expressions. Because it is prominently featured, we put it
into the rubric. We also adopt choosing appropriate E) data
types as a goal from the books. The instructors in particular
named duplication S of (partial) expressions and the use of
unnamed constants (8) as problems. Having only essential
expressions, thus not covering a subset of another expression,
can be seen as a complex goal, as it requires a good grasp of
data types and edge cases.

Decomposition — Instructors and books would like to see
a decomposition that results in most routines having a limited
set of tasks ®), and duplication ® that is eliminated. Within
routines, instructors and books would like different tasks to
be separated into parts . Because the instructors generally
placed a strict limit on tasks, we considered it a problem to
put most code in one or a few routines ().

A related goal named by both instructors and books is
having a limited amount shared variables ®), i.e. reducing
scope. Reusing variables for multiple purposes is a related
violation (§) that was reported by instructors and books.

The associated optimization goal is to have routines per-
form wvery limited S sets of tasks while at the same time
limiting the number of shared variables and parameters.

Modularization — Based on the statements from one in-
structor, and supported by the books, we included having
a clearly defined subject ® as a goal for modularization.
Elaborating on this, having a limited amount of routines
was requested by one instructor and all books, and having a
limited amount of variables only by the books. The books in
general go beyond this by requiring a more advanced separa-
tion of concerns that minimizes communication between
modules. We included this as a optimization goal. On the
other hand, instructors noted that students sometimes per-
form artificial separation, which can be seen as a problem ();
this is also supported by the books, in arguing to limit the
amount of modules.

4. CONCLUSIONS AND DISCUSSION

4.1 Conclusions
Our research questions were as follows:

1. What criteria for code quality, relevant to introduc-
tory programming courses, are present in professional
software engineering literature?

2. What kind of feedback do instructors of introductory
programming courses give to students on programming
assignments?

3. What levels of code quality can be distinguished in
professional standards and instructional practice?

As to Question 1, using the chosen sample of books as our
research material, we found that selecting only suggestions
relevant to introductory programming courses still led to
a broad and richly described view of code quality: in our
inductive analysis we found 20 topics, each having many
related suggestions.

As to Question 2, our interviews with instructors provided
us with a variety of statements on code quality. By offering
the instructors our selection of topics from handbooks, we
made sure the results were not limited to the instructors’
usual way of giving feedback. Our subsequent analysis gen-
erated eight topics focusing on different aspects of program
code. Notably, most of the statements about ‘modularization’
were collected only when instructors were prompted with the
topics from the book analysis.

As to Question 3, from our analysis of the empirical data a
classification emerged consisting of nine criteria, each having
many sub-criteria that are divided into three levels.

4.2 Reflection on the methods used

We discuss the present study in terms of the framework for
validity of qualitative research by Lincoln and Guba [10].

Supporting the credibility of this research is the prolonged
engagement of the interviewer within the domain of intro-
ductory programming courses courses. The interviewer has
taught several introductory programming courses using a
variety of open educational resources, based on different
views of code quality. This allowed the interviewer to keep
an open mind. The results of interviews and book analysis
have also thoroughly been discussed with a peer not directly
involved in teaching introductory programming courses. Fi-
nally, combining book suggestions to the model derived from
the interviews allowed us to critically review interpretations
done during the analysis of the interviews.

Our selection of data sources influences the transferability
of the results. We have based our handbook analysis in this
pilot on three popular programming books that all focus on
code quality. It does not seem likely that our selection of
criteria would have been broader if we had selected more
handbooks on code quality: all introductory topics from [19]
are covered by the suggestions. It does seem relevant to in-
clude introductory programming textbooks, to provide even
richer descriptions. We did severely constrain our selection
of applicable books and suggestions by limiting these to com-
mon introductory topics [19] and by excluding handbooks
that cover a specific programming language. This means
that we have not considered some specific topics that come
up when using object-oriented, functional or logic languages.

107

We see extending the scope of this study as future work, but
instructors should be able to accommodate specific require-
ments in one of the criteria or in an additional specification.

The sample of instructors in the pilot study was relatively
small. However, their teaching experience spans a variety of
courses at considerably different institutions. In spite of these
different backgrounds they pointed to very similar features of
code when giving feedback. In addition, there were striking
similarities between the way instructors talked about code
quality and the way the handbooks treat the subject. In-
structors regularly recognized topics that are proposed by the
books and were able to provide examples, and the handbooks
contain many specific suggestions that elaborate on criteria
that emerged from the interviews. It seems appropriate,
nevertheless, to incorporate more instructors in a follow-up
study. Furthermore, it should be interesting to elicit feed-
back data from instructors involved in advanced courses on
software engineering. Finally, although the content and form
of the Dutch courses taught by our instructors appears to
comply with international curriculum standards [1], including
instructors from the international community could enrich
the data even more.

There are some issues with the dependability of this study.
The qualitative analysis of the data was mainly done by the
first author of this paper. Possible problematic categoriza-
tions were discussed with the other authors until a consensus
was reached. Although we expect the reliability of our selec-
tion and analysis to be reasonable, there is an opportunity
to perform systematic reliability testing and refinement of
the codes used in the follow-up to this pilot study.

We have taken measures that contribute to the confirma-
bility of this study. All interviews have been transcribed
verbatim, and all book suggestions have been archived in
full, both stored in combination with applied codes.

4.3 Comparison to earlier schemes

It is interesting to investigate how our results relate to ex-
isting grading schemes. The instructors’ statements in this
study contain a view of code quality that spans the top-
ics that are often present in previously published grading
schemes, although none of the previous schemes contain all
of the criteria we discovered. As such, we see our study as
an important step in creating a more generally usable model
for feedback.

The suggestions derived from the handbooks also provide
more detail than is available in the earlier grading schemes.
We have found, for example, completeness, distinctiveness,
conciseness and consistency of names; the highlighting of
important decisions in comments, in addition to summariz-
ing; having lines that are too long; arrangement of code in
files; spelling errors in comments; misleading customization
of control structures; having simple expressions; having no
duplicate parts of code. Generally, these sub-criteria add
detail to the existing grading schemes, which may provide
the student with hints on how to improve the code. We have
already seen that learning how to improve is a fundamen-
tal part of learning from feedback [15] and that feedback
specificity is linked to better learning in general [16].

We did find an aspect of code quality that our data has
not accounted for: Becker 2] assesses the presence of ini-
tialization for new variables. This is a requirement that
does not make sense in languages that always provide clean
memory for variables, which is probably why it is not treated

1 2
names appear unreadable,
meaningless or misleading

names

fuzzy, lengthy, misspelled

names accurately describe the intent
of the code, but can be incomplete,

3 4

names accurately describe the intent all names in the program use a
of the code, and are complete, consistent vocabulary
distinctive, concise, correctly spelled

Figure 2: Example row of a rubric constructed from the data in this study.

in the handbooks we studied. Such a criterion could be
embedded in a customized rubric when used with languages
that need this, although we would suggest using a separate,
course-specific rubric or checklist.

4.4 Future work

It appears that an empirical analysis of the kind described
here has not been done before. The richness of our results
and the consistency of the findings from our two empirical
sources suggest that our method is fruitful. We intend to
extend the pilot by incorporating a bigger and more diverse
sample of data sources (handbooks, textbooks, instructors)
and by considering the need for extension beyond the topics
covered by introductory courses.

Even after gathering the data in a more rigorous fashion,
we can only really evaluate the usefulness of our research by
putting it into practice for giving feedback. To understand
the feasibility of constructing a rubric from the gathered
data, we employed some simple rules to derive a prototype
version (Figure [2). We defined four levels of achievement, a
recommended number to start with for a rubric to be used by
many instructors [21]. We put the problematic) features
in the level 1, the optimization goals in level 4, and the
core goals ® in levels 2 (goal not yet reached) and 3 (goal
reached). For each level, we wrote verbal descriptors to help
students understand what is expected from them. We have
already noticed that this requires some interpolation between
levels and more importantly, devising formulations that do
justice to the progression we expect students to make. Doing
this systematically could be a research project in itself.

Evaluating such a rubric in an educational setting typically
requires an evaluation of the reliability of the rubric by
checking consistency between graders [13]. On top of that,
validity can be considered, in particular the suitability for
student use of the verbal descriptors [14]. We intend to start
evaluation of a fully specified rubric in 2015.

5. REFERENCES

[1] ACM/IEEE-CS Joint Task Force on Computing
Curricula. Computer science curricula 2013. Technical
report, ACM Press and IEEE Computer Society Press,
December 2013.

Katrin Becker. Grading programming assignments
using rubrics. ACM SIGCSE Bulletin, 35(3):253-253,
June 2003.

B. W. Boehm, J. R. Brown, and M. Lipow.
Quantitative evaluation of software quality. In
Proceedings of the 2nd. International Conference on
Software Engineering, ICSE ’76, pages 592-605. IEEE
Computer Society Press, 1976.

Sue Fitzgerald, Brian Hanks, Raymond Lister, Renee
McCauley, and Laurie Murphy. What are we thinking
when we grade programs? In Proceedings of the 44th
ACM Technical Symposium on Computer Science
Education, SIGCSE ’13, pages 471-476. ACM, 2013.

108

[5] R. Wayne Hamm, Kenneth D. Henderson, Jr.,
Marilyn L. Repsher, and Kathleen M. Timmer. A tool
for program grading: The Jacksonville University scale.
ACM SIGCSE Bulletin, 15(1):248-252, February 1983.
John Hattie. What is the nature of evidence that makes
a difference to learning?, 2005. http://research.acer|
edu.au/research_conference_2005/7.

John Hattie and Helen Timperley. The power of
feedback. Review of Educational Research,
77(1):81-112, 2007.

James W. Howatt. On criteria for grading student
programs. ACM SIGCSE Bulletin, 26(3):3-7, 1994.
Anders Jonsson and Gunilla Svingby. The use of
scoring rubrics: Reliability, validity and educational
consequences. Educational Research Review, 2(2):130 —
144, 2007.

Yvonna S. Lincoln and Egon G. Guba. Naturalistic
Inquiry. Sage Publications, Inc., 1985.

Robert C. Martin. Clean code: a handbook of agile
software craftsmanship. Pearson Education, 2008.
Steve McConnell. Code complete. O'Reilly Media, Inc.,
2004.

Barbara M. Moskal and Jon A. Leydens. Scoring rubric
development: Validity and reliability. Practical
Assessment, Research & Evaluation, 7(10):1-11, 2000.
Y. Malini Reddy and Heidi Andrade. A review of
rubric use in higher education. Assessment &
Evaluation in Higher Education, 35(4):435-448, 2010.
D. Royce Sadler. Formative assessment and the design
of instructional systems. Instructional science,
18(2):119-144, 1989.

Valerie J. Shute. Focus on formative feedback. Review
of Educational Research, 78(1):153-189, 2008.

Lon Smith and Jose Cordova. Weighted primary trait
analysis for computer program evaluation. Journal of
Computing Sciences in Colleges, 20(6):14-19, June
2005.

Anselm Strauss and Juliet M. Corbin. Basics of
qualitative research: Grounded theory procedures and
techniques. Sage Publications, Inc., 1990.

Allison Elliott Tew and Mark Guzdial. Developing a
validated assessment of fundamental CS1 concepts. In
Proceedings of the 41st ACM Technical Symposium on
Computer Science FEducation, SIGCSE 10, pages
97-101. ACM, 2010.

Dave Thomas and Andy Hunt. The Pragmatic
Programmer: From Journeyman to Master.
Addison-Wesley Professional, 1999.

Barbara E. Walvoord and Virginia Johnson Anderson.
Effective grading: A tool for learning and assessment in
college. Wiley, 2011.

Dylan Wiliam. What is assessment for learning?
Studies in Educational Fvaluation, 37(1):3 — 14, March
2011.

6

[7

8

9

(10]
(11]
(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

http://research.acer.edu.au/research_conference_2005/7
http://research.acer.edu.au/research_conference_2005/7

	Introduction
	Code quality
	Feedback
	Aim of the study

	Method
	Analysis of professional handbooks
	Instructor interviews
	Construction of the model

	Results
	Analysis of professional handbooks
	Instructor interviews
	Construction of the model

	Conclusions and discussion
	Conclusions
	Reflection on the methods used
	Comparison to earlier schemes
	Future work

	References

