
A set of exercises and tests for teaching
tracing skills using a mastery approach

Martijn Stegeman
University of Amsterdam

The Netherlands
martijn@stgm.nl

ABSTRACT
We present a first implementation of exercises on code evaluation
and tracing for use alongside introductory programming courses.
The goal of these exercises and accompanying tests is to provide a
structure that enables students to fully master a number of common
tracing skills. In developing the exercises, we focused on keeping
cognitive load as low as possible by gradually introducing new
programming language elements, while allowing for repeated prac-
tice of previously introduced concepts. The exercises range from
evaluating expressions involving integer division to tracing loops
with multiple variables. We also generated small tests that students
take to show their mastery of the concepts, allowing only a very
limited number of mistakes per test and requiring students to take
another version if needed. Using this model in several introductory
programming courses over the past year shows that it appears to
be possible to achieve mastery on these tracing skills for almost all
students while maintaining positive attitudes toward the exhaustive
training process.

CCS CONCEPTS
• Social and professional topics→ Computer science educa-
tion; CS1; Computational thinking.

KEYWORDS
assessment, tracing, notional machines, mastery learning

ACM Reference Format:
Martijn Stegeman. 2019. A set of exercises and tests for teaching tracing
skills using a mastery approach. In 19th Koli Calling International Conference
on Computing Education Research (Koli Calling ’19), November 21–24, 2019,
Koli, Finland. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/
3364510.3366154

1 INTRODUCTION
The Lister et al. [3] working group has shown that many students
in introductory programming courses lack a good grasp of the basic
skills needed to solve programming problems. One such skill is read-
ing code: making sense of a program with respect to the computer
that the code will run on. A notional machine is an abstraction

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Koli Calling ’19, November 21–24, 2019, Koli, Finland
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7715-7/19/11.
https://doi.org/10.1145/3364510.3366154

of the layers of hardware and software that the programming lan-
guage is built upon, and students need to form a “robust” mental
model [8] to be able to interpret (trace) code correctly. From teach-
ing experience, we know that tracing is an important part of the
problem solving process, for example to verify correct composition
of programs. Indeed, Lopez et al. [5] and Lister et al. [4] found
strong associations between code writing and tracing skills. On
the other hand, Du Boulay [1] found that students can learn to
program using “bizarre” mental models. Additionally, Vainio and
Sajaniemi [10] have found several problems with tracing. For exam-
ple, students might use overly simple heuristics like keeping only a
single value in working memory at a time; also, many students are
hesitant to use externalization techniques like drawing a diagram.
Such problems might be explained using the cognitive load theory
formulated by Sweller and others, who propose that the process
of solving problems may dominate working memory, leaving no
room for reflection and learning by students [9].

Hence, we would like to get tracing “out of the way” early by
teaching it explicitly and separate from programming assignments.
Interestingly, studies on teaching how to trace by hand are hard to
find. Nelson et al. [7] and Xie et al. [12] have been working on meth-
ods for teaching program comprehension early in programming
courses, but many other studies exclusively focus on computer-
generated traces. Here, we would like to train students to trace
using pen and paper. To this end, we have written instructional
materials that completely focus on tracing techniques, to be used
alongside existing course materials. In our approach, we borrow
aspects of a system of mastery learning aimed at higher educa-
tion: the Keller plan [2]. Core principles are the ability for students
to plan tests at their own pace, each covering a small part of the
course syllabus, and having to repeat tests that were not completed
successfully.

2 TEACHING MATERIALS
We have designed a practice book that is modeled after “All You
Need in Maths!” by Van de Craats and Bosch [11]. A typical section
(figure 1) contains exercises of increasing complexity, while the op-
posite page is reserved for an explanation of the concepts involved.
In this case, the text introduces assignment, order and variables in
expressions. Additionally, it shows a technique for tracing sequences
of variable assignments. The practice book contains nine chapters
that introduce programming concepts along with evaluation rules
and tracing techniques. We have designed the book to use alongside
a course in C, but have used an excerpt with a course in Python.

We would like students to build a robust mental model of the
notional machine, so we aim to gradually introduce new language

https://doi.org/10.1145/3364510.3366154
https://doi.org/10.1145/3364510.3366154
https://doi.org/10.1145/3364510.3366154


Koli Calling ’19, November 21–24, 2019, Koli, Finland Martijn Stegeman

3.1 Variables

Evaluate the following code fragments, providing the final value of all variables:

dey = 3 + 0.5

luo = 1.5

3.1

gog = 1 * 3

oer = 3 * 0.5

3.2

eli = 1.0

soc = 1.0 + 3

3.3

jon = 1.0 - 2

aus = 2 * 0.5

3.4

abe = 1.5 / 1.0

sir = abe / 0.5

3.5

vow = 2 * 1.5

nub = vow + 1.0

3.6

gup = 1 / 1.5

ley = gup * 2

3.7

tez = 1.5 + 1

nap = tez * 3

3.8

jib = 1.0 - 3

jib = 2 + 3

3.9

aus = 2 - 2

aus = 3 - 1.5

3.10

bam = 3 / 2

bam = 1.0 + 1.0

3.11

tye = 1.5 / 1.5

tye = 1 * 1

3.12

nam = 1 + 1

sob = 1.0 - 1.0

nam = nam * 2

off = sob / 0.5

off = nam / 3

off = off + 3

3.13

kaw = 2 * 1

kaw = 1.5 * 1.0

zan = kaw / 2

zan = kaw * 1

kaw = 3 + 0.5

kaw = zan / 1.5

3.14

ora = 2 / 1.0

ora = 1 - 0.5

ora = ora + 0.5

ora = ora / 3

quo = ora - 1

ora = ora - 3

3.15

gup = 3 + 0.5

gup = 1 + 1.0

han = 2 / 2

gup = gup + 0.5

han = gup - 1

han = gup + 1.0

3.16

lod = 2 / 2

lod = 2 * 3

nid = lod / 1.0

mou = lod * 3

lod = lod - 1

gyp = 0.5 - 3

3.17

iwa = 3 - 2

you = iwa + 2

way = iwa - 0.5

iwa = way - 1

iwa = 2 / 2

iwa = iwa + 0.5

3.18

oka = 3 - 1

oka = oka * 1

fei = oka * 1

oka = oka * 1.5

oka = oka * 1

oka = oka / 0.5

3.19

fae = 1 + 0.5

fae = fae - 1.0

fae = 2 * 0.5

fae = fae - 1.5

fae = 0.5 - 2

fae = fae + 2

3.20

22

Assignment In the following code fragment, a value is assigned to a variable:

het = 2.2

Upon executing that line of code, a variable is created with the name het, and it
is assigned the value 2.2. This variable then becomes part of the final state after
executing the code fragment. However, a code fragment can also contain multiple
assignments below each other. In the following example, we assign three variables,
each with their own name:

ike dev wan

ike = 3.14 3.14

dev = 3 / 4 3.14 0

wan = 0.75 3.14 0 0.75

On the left we show the lines of code that are executed. On the right, we keep track of
what happens when executing each line: we trace the code fragment. As one variable
is being assigned, we draw a box around the new value. On the lines below, that
value is retained, which we show by copying the value down. By doing this for all
lines, we can read the final state of all variables on the last line: ike, dev and wan,
with their accompanying values.

Order It’s possible to assign a value to a variable for a second time (or more often).
The “old” value will be overwritten. This makes order of the program important: we
always process the lines from top to bottom. Take a look at the following example.

wei

wei = 1 ��1

wei = 4 4

The variable wei is assigned a value two times, as is shown by the two boxes that are
drawn around the values. But the final state only consists of a single variable named
wei, with value 4. The value 1 that was assigned earlier has disappeared when it was
overwritten.

Variables in expressions Now that we have variables, we can also use them in
calculations, referring to them by their name.

hat say

hat = 1 1

say = hat + 4 1 5

The state after executing the final line of code consists of two variables: hat = 1 and
say = 5.

23

Figure 1: Extract of the programming book, explaining a
trace of sequential assignment statements (zoom in for
more detail).

elements, and independently assess these, as suggested by Luxton-
Reilly et al. [6]. Hence, in our book, chapters strictly build on earlier
chapters. This means that many chapters have some exercises that
involve expressions with a modulo operator, while only the final
chapters have functions. This is an important aspect of the book,
allowing students to focus on a limited number of concepts at the
same time, while being able to rehearse those introduced previously.
For example, in the excerpt above we find that integer division and
automatic conversion, both from an earlier chapter, are relevant to
that section’s exercises. Topics for all current chapters are: calcula-
tions, logic, variables, conditionals, while loops, for loops, strings,
arrays, and functions. For each chapter in the book, we created a
set of tests that allow students to demonstrate mastery. The tests
contain exercises that are of the same level of complexity as the final
exercises in the chapter. Students are expected to spend between 4
and 10 minutes per test.

3 EXPERIENCES
In 2018 and 2019, we have used the practice book and tests in three
undergraduate courses at the University of Amsterdam. The courses
had traditional lectures (mostly on video) as well as regular larger
programming assignments with a focus on problem solving practice.
Tests were compulsory but didn’t count towards the final grade.
Some notable observations are summarized below.

Attitudes A surprising aspect of the tests is that students find
them to be quite motivating, even if they have to retake several.
The way we integrated the tests into the courses apparently made
students feel “safe” to do them repeatedly and a sense of accom-
plishment was regularly noticeable.

Prerequisites The first half of the book starts out with arith-
metic and logic, and we build on that until we introduce strings
in chapter 7. This does not seem to pose real problems, even with
non-science students. A few students reported having some trouble
with “maths” initially, and they still progressed fine on the tests (as
did other students).

Answer sheets We expected students to practice during lab
hours and discuss exercises with other students. Immediately from
the first week there were persistent calls to have answer sheets for
the book. Students like to practice on off-hours, often at home, and
need answers to check their comprehension and progress.

Language independence It seems that using slightly abstracted
pseudocode doesn’t bother students when learning to trace code,
for example when we leave out explicit block markers {} from
the C language. However, in our Python course we saw that some
aspects of our C-inspired syntax were indeed confusing.

Impact on teaching It appears that students learn the program-
ming vocabulary better from the book than from our lectures and
assignments. We have felt more comfortable asking students to “try
to make a trace” when fazed by an annoying bug. And post-test
discussions have allowed us to more systematically correct the use
of the nonexistent word “if-loop”.

4 FUTUREWORK
The book and tests are in active development and use, and we
encourage teachers to take part in testing an researching the useful-
ness for goals like we set out in the introduction. Code, book chap-
ters and various sample tests may be downloaded or contributed to
at http://stgm.nl/basics.

ACKNOWLEDGMENTS
Many thanks to Jelle van Assema, Simon Pauw, Jill de Ron and
Wouter Vrielink for contributing to the development of the book,
tests and software, and to our many teaching assistants for con-
tributing corrections.

REFERENCES
[1] Benedict Du Boulay. 1986. Some difficulties of learning to program. Journal of

Educational Computing Research 2, 1 (1986), 57–73.
[2] Fred S. Keller and John G. Sherman. 1974. PSI, the Keller Plan Handbook: Essays

on a personalized system of instruction. W.A. Benjamin, Menlo Park, CA, U.S.A.
[3] Raymond Lister, Elizabeth S. Adams, Sue Fitzgerald, William Fone, John Hamer,

Morten Lindholm, Robert McCartney, Jan Erik Moström, Kate Sanders, Otto
Seppälä, et al. 2004. A multi-national study of reading and tracing skills in novice
programmers. In ACM SIGCSE Bulletin, Vol. 36. ACM, 119–150.

[4] Raymond Lister, Colin Fidge, and Donna Teague. 2009. Further evidence of
a relationship between explaining, tracing and writing skills in introductory
programming. In ACM SIGCSE Bulletin, Vol. 41. ACM, 161–165.

[5] Mike Lopez, Jacqueline Whalley, Phil Robbins, and Raymond Lister. 2008. Rela-
tionships between reading, tracing and writing skills in introductory program-
ming. In Proceedings of the fourth international workshop on computing education
research. ACM, 101–112.

[6] Andrew Luxton-Reilly, Brett A. Becker, Yingjun Cao, Roger McDermott, Claudio
Mirolo, Andreas Mühling, Andrew Petersen, Kate Sanders, Jacqueline Whalley,
et al. 2018. Developing Assessments to Determine Mastery of Programming
Fundamentals. In Proceedings of the 2017 ITiCSE ConferenceWorking Group Reports.
ACM, 47–69.

[7] Greg L. Nelson, Benjamin Xie, and Amy J. Ko. 2017. Comprehension first: eval-
uating a novel pedagogy and tutoring system for program tracing in CS1. In
Proceedings of the 2017 ACM Conference on International Computing Education
Research. ACM, 2–11.

[8] Juha Sorva. 2013. Notional machines and introductory programming education.
ACM Transactions on Computing Education (TOCE) 13, 2 (2013), 8:1–8:31.

[9] John Sweller. 2016. Story of a research program. Education Review/Reseñas
Educativas 23 (2016).

[10] Vesa Vainio and Jorma Sajaniemi. 2007. Factors in novice programmers’ poor
tracing skills. In ACM SIGCSE Bulletin, Vol. 39. ACM, 236–240.

[11] Jan van de Craats and Rob Bosch. 2014. All You Need in Maths! Pearson Education
Benelux, Amsterdam, Netherlands.

[12] Benjamin Xie, Greg L. Nelson, and Amy J. Ko. 2018. An Explicit Strategy to Scaf-
fold Novice Program Tracing. In Proceedings of the 49th ACMTechnical Symposium
on Computer Science Education (SIGCSE ’18). ACM, 344–349.


	Abstract
	1 Introduction
	2 Teaching materials
	3 Experiences
	4 Future work
	Acknowledgments
	References

